Journal of Automata, Languages and Combinataui¢g) w, x—y
© Otto-von-Guericke-Universitat Magdeburg

The Id and dlad Bio-Operations on Formal Languages

MARK DALEY

Department of Computer Science, University of Saskatamewa
Saskatoon, Saskatchewan, S7N 5A9, Canada
e-mail: dal ey@s. usask. ca

OsCARH. IBARRA

Department of Computer Science, University of California
Santa Barbara, CA 93106, USA
e-mail:i barra@s. ucsb. edu

LILA KARI, IAN MCQUILLAN

Department of Computer Science, University of Western i@nta
London, ON N6A 5B7, Canada
e-mail: {kari,incquill }@sd. uwo. ca

and

KoJI NAKANO

School of Artificial Complex Systems Engineering, Hiroshibniversity
Kagamiyama, Higashi-Hiroshima 739-8527, Japan
e-mail: knakano@ se. hi roshi na-u. ac.jp

ABSTRACT

We continue the language theoretic study of operationsesigd by the gene unscrambling process
in stichotrichous ciliates. One of the two complementarydeis of gene unscrambling is based on
operations inspired by the ways in which a DNA molecule cdd:fé: (hairpin loop with inverted
pointers) which reverses a substring between a pointeresguand its reverse, Id(loop with direct
pointers)-excision which deletes a substring between winters and dlad(double loop with alter-
nating direct pointers)-excision / reinsertion which swawo substrings marked by pointer-pairs.
We specifically consider the closure properties of severaliffes of languages under the operations
Id anddlad and the solvability of language equations involving theserations.

Keywords: Theoretical DNA computing, bio-operations, closure prtips, formal languages, deci-
sion questions

1Research of Mark Daley and Lila Kari has been supported byrdbSciences and Engineering Council of
Canada Grants. Research of Oscar H. Ibarra and Koji Nakasdéen supported by the Japan Society for the
Promotion of Science (JSPS) Research Program S02251; Bstlaarra was also supported by NSF Grants 1IS-
0101134 and CCR02-08595.

1. Introduction

The stichotrichous ciliates, a class of single-celled nigas, has recently been the motiva-
tion for a number of papers in formal language theory. Onéhefihtriguing properties of
ciliates is that they keep their genetic material in a sclachborm and thus need some form
of computational apparatus in order to descramble theieg@md produce functional pro-
teins. For example, the gene encodidiyA polymerase in the ciliateStylonichia Lemnae
is broken into more than 48 discrete pieces that must beagdsed in the correct order to
produce a functional gene [12]. The biological details @ throcess are still not yet fully
understood but are currently the subject of active invasitign. Further details on the biology
of this process can be found in [15, 16, 17].

The formal study of this process has lead us not only to a tbetteerstanding of ciliate
genetics, but has also produced two models of computatatretie inherently interesting in
their own right.

The first model, proposed by Kari and Landweber [10, 11] psgisdwo atomic operations
based on circular insertions and deletions guided by pantéthin the gene. The second
model, motivated by Ehrenfeucht, Harju, Petre, PrescattRozenberg [4, 5, 18], consists
of three operations inspired by the ways in which a DNA moleaan fold: ki (hairpin
loop with inverted pointers) which reverses a substringveen a pointer sequence and its
reverseld(loop with direct pointers)-excision which deletes a stibgtbetween two pointers
anddlad(double loop with alternating direct pointers)-excisiorihsertion which swaps two
substrings marked by pointer-pairs.

While the full details of the biological mechanisms undantythis process are not yet
completely understood, the reader may find further inforomaih [15, 16, 17].

In this paper we will consider the properties of fldeanddlad operations from an abstract
formal-language-theoretic viewpoint and present some results on thehi operation as
well. For similar studies of théi operator and the operations in the Kari-Landweber model,
the reader is referred to [2, 3].

The layout of the paper is as follows: in Section 2 we definédtanddlad bio-operations
and investigate the closure properties of NCM and its géizations. NCM is the class
of languages defined by nondeterministic finite automatareunged with reversal-bounded
counters (i.e., the counters can be incremented/decrechbgtl and tested for zero but the
number of alternations between nondecreasing mode andcreasing mode and vice-versa
is bounded by a fixed constant) [8]. It is known [6] that NCMhe tsmallest class of lan-
guages containing the regular sets that is closed underpgbetions of homomorphism,
intersection, and shuffle (section 2 gives the precise defim)i Section 3 considers the clo-
sure properties of languages defined by time- and spacededufuring machines. Section 4
investigates the closure properties of two families of Isteyns, namely OL and ETOL under
hi anddlad. Section 5 briefly looks at language equations involvingdhel andld opera-
tion and provides some general results concerning any Eggaquation involving a unary
operator. Section 6 provides a summary and conclusions.

The notations used in the paper are summarized as followslghabet is a finite non-
empty set. A wordv overY. is an element of the free semigroup (denafed) generated by
the letters o2 and the catenation operation. The length of a word, written is equal to
the number of letters in the word. In the free monaiti we also allow the empty word

2 THE FAMILIES NCM, NFCM, AND NPCM 3

where|A| = 0. A languagel is a, possibly infinite, set of words over a given alphabet Th
complement of a languadeis written L and is defined ag® = ¥* \ L.
For further details on basic formal language theory, theee# referred to [19].

2. The Families NCM, NFCM, and NPCM

In this section, we investigate the closure properties obus families (or classes) of lan-
guages unddw anddlad bio-operations [5, 18, 4]. Our objective is to identify larglasses
of recursive languages that are closed under these biatpes. We will use the terms
“family” and “class” interchangeably in the paper. We firgffide theld operation from [4].

Definition 1 Leta be a word inX*. Theld operation onv, denoted by I¢h) is defined as
ld(e) = {zpz|la = zpypz, 2,2 € X*,y € X T, pe N}

In the definition above, we sgy is a pointer. The definition can then be extended to
languages:

ld(Z) = | J ld(a), foranyZ C £
a€L

We now show that allowing pointers of arbitrary length is ieglent to allowing pointers
of length one.

Lemma 1l Foranyw € ¥V, ld(w) = {zaz|w = rayaz, v,z € ¥*,y € ¥, a € ¥}.

Proof. “C” Consideru € Ild(w). Thenu is of the formzpz wherez,z € ¥* and
p € . We can thus writet = zpips...pp2z, n > 1 wherew = zp1ps...ppYp1P2...Pn2
andp = pips...p, With p; € . We now rewriteu = (zp1ps...)pnz = 2'ppz andw =

(xp1p2...)pn(Yp1P2...)Pnz = 'ppy'pnz Wherez' = xpips...pp—1 andy’ = ypipa...pn—1
and the inclusion follows.
“2” Obvious. O

Next, we give the definition of thélad operation [4].

Definition 2 Leta be aword inX*. Thedlad operation onx, denoted by dla@) is defined
as dlada) = {upbqwpaqv|a = upaqupbqu,u, w,v € ¥*,a,b,p,q € X7 }.

We say thap andgq are pointers above. This definition is extended to languagésllows:

dlad L) = | J dlad(a), foranyL C ©*.

acl

Similarly to the result fodd above, we now show that we can consider pointers of length
one without loss of generality in th#ad operation.

Lemma 2 dlad(w) = {zafbyaabz|w = zaabyaBbz,z,y,z € ¥*,a,8 € ¥¥,a,b € X}.

Proof. “C” Consideru € dlad(w). Thenw is of the formu = zpfqypagz wherew =
zpagqypBqz andp, ¢, «a, B € ¥, x,y,z € ¥*. Now letp = p1ps...pn, ¢ = q1G2...qm Where
Di,q;i € X, n,m > 1. We can now writer = xp1ps...pnB¢1G2---qmyp1P2-.- PrnOq1G2---qm 2
andw = zpi1ps...pnq1q2---gmYP1P2---Pnfq1q2...qmz. Takez' = z,a = p1;, b = qi,
o = py.ppa, Yy = qoqry, B = pa...ppf andz’ = qs...q, 2z thenu = z'af'by’ac’ bz’
wherew = 2'aa’by’af'bz' and the inclusion follows.

“D” Trivial. O

Fork > 0, let NCM(k) be the class of nondeterministic one-way finite automats au
mented withk reversal-bounded counters, and NCM be the union of suckedasver alk’s
(see [8] for details). Thus, at every step, a counter can treinented by 1, decremented by
1, or not changed, and it can be tested for zero. It is revdrsahded in that in any compu-
tation, the number of alternations between nondecreasodgrand nonincreasing mode and
vice-versa is bounded by a given constant. For notationalemience we also use NCR)(
and NCM to denote the respective families of accepted lagegiaand use the same notation
to refer to a machine in the classes. Clearly, NCM definesgelatass of languages (all
regular sets, some non-context-free languages, etc.) thatean NCM(0) haso counter
and is an ordinary finite automaton. Hence, the class NCM@ESE = regular sets.

Let NPCM be an NCM augmented with an unrestricted pushdoagkstAn NFCM is an
NCM augmented with a free (i.e., unrestricted) counter. AW (NFCM) withk reversal-
bounded counters will be denoted by NPGIM(NFCM(k)). Thus, an NPCM(0) (NFCM(0))
is just an ordinary pushdown (one-counter) automaton. Bl@dPCM(0) = CF = context-free
languages, and NFCM(0) = one-counter languages.

There is a nice characterization of NCM (respectively, NEG¥CM) in terms of regular
sets (respectively, context-free languages, one-colariguages). Thehuffleu 11 v of two
wordsu, v € ¥* is a finite set consisting of the wordswv; . .. ugvy, whereu = ujus .. . uy
andv = vyvs ... v for someu;, v; € ¥*. If Ly andL, are two languages, theshuffleis the
language

LI L, = U ullw.

u€ly,vEL>s

A simple shuffle language a language of the forfa* IT {d"e™ | n > 0}, for some alphabet
¥} and distinct symbold, e.

It is known [6] that NCM (respectively, NPCM, NFCM) is the sheat class of languages
containing the regular sets (respectively, context-faegliages, one-counter languages) that
is closed under homomorphism and intersection with simiplgfle languages. In particular,
since NCM is clearly closed under homomorphism, intersectand shuffle (i,e., if.; and
Ly are in NCM, thenL; II L, is also in NCM), we see that NCM is the smallest class of
languages containing the regular sets that is closed urmeomorphism, intersection, and
shuffle.

We now proceed to examine the closure of NCM (respectiveBCNI, NFCM) undeid
anddlad operations. We will need the following proposition whicheiasily verified using
standard constructions:

A full trio is any family of languages closed homomorphism, inversedmorphism, and
intersection with regular sets.

2 THE FAMILIES NCM, NFCM, AND NPCM 5

Proposition 1 NCM(k), NPCM(), and NFCME) are closed under homomorphism, inverse
homomorphism, and intersection with regular sets.

Proposition 2 Every full trio is closed under Id.

Proof. Let L be a language over the alphabg&t For every symbot in 3, leta.1,a.2,a.3
be new distinct symbols, ard;, 35, X3 be the set of all such symbols, respectively. We can
think of a.1,a.2, a.3 as “marked” versions of symbel

Define a homomorphisia from (X U ¥, U X, U X3)* to ¥* as follows:h(a) = h(a.1) =
h(a.2) = h(a.3) = aforallain X. LetL’ = h~'(L) N {¥*a.1¥fa.3%* | a € ¥}
Now define another homomorphisgnas follows: For alla in X, g(a) = ¢(a.3) = a and
g(a.1) = g(a.2) = X. Clearly,ld(L) = g(L"). |

The next result now follows from the two propositions above.

Corollary 1 NCM(k), NPCM¢), and NFCME) are closed undetd.

Note that in the above proof, the purpose of the new symbalsta inverse homomor-
phism and intersection with regular sets is to obtain filbmlanguagd.’ where the different
components (segments) of the string are marked, i.e., steng in L’ is of the formzpypz,
where the string:, the firstp (which is a symbol), the string, the secong, and the string
z use different alphabets. In this section, when we say tfeattimponents of a string are
marked, we will mean that they use different alphabets,ingerse homomorphism and in-
tersection with regular set have already been done. Alsmdtational convenience, we will
also refer to languagg’ and the machin@/’ accepting it simply ag. and M, respectively.
Applying the homomorphism to remove the marks is also ditéégward and we will as-
sume this is done explicitly at the end of the constructioth&proofs. The next proposition
concerns thélad operation.

Proposition 3 NFCM and NCM are closed undétad.

Proof. Given an NFCMM acceptingL, we will construct another NFCM{' accepting
dlad(L).

A configuration of M is a triplea = (q, f, R), whereq is the statef is the value of the
free counter, and? is an array of values of the reversal-bounded counters. Wieesay
that M’ “records” a configurationy, we mean, it stores the state in its finite control, and
stores the values of the free counter and reversal-bourmi@tters into an auxiliary set of
counters. By using additional counters, we may assume lileaditiginal values of the free
counter and reversal-bounded counters are preserved., @ftesrecordingy, M' can still
continue its computation (from configuratiaf using the original counters. We now describe
the computation of\/’, given a (marked) input of the formipyqzpwqz.

M" will simulate the computation of/ on vpwqxzpyqz. M' first simulatesM on input
segmentp. After processing, M will be in some configuratiow,. Without moving its
input head M’ guesses a configuratien, thatM would enter starting ony,, on some input
w. It records(a,, a,). M' also guesses two configuratiods and 5, and records two
copies of each of these configuration using auxiliary cosnfe/’ nows moves its input head

and simulates the computation df ony starting in configuratior,. After processingy,
M checks that the configuration reachedjs M’ then continues the simulation éf on
input segmengzp starting in configuratiorv,,. After processingzp, M' checks that\/

is in configurations,. Then reading;, M' checks that\/ when started iy, indeed enters
configurationv,,. Finally, M’ completes the simulation @ on the remaining input segment
gz starting in configuratiory, and accepts ifi/ accepts. Itis easily verified that’ accepts
dlad(L(M)). Note that whenV/ is an NCM (i.e., it has no free counter), théfY is also an
NCM. |

Clearly, in the construction above, whéh does not have any counter, th&fl also does
not need any counter. Moreover, as mentioned earlier, tidyfaf regular languages are
exactly the languages accepted by finite acceptors not autgohdy any storage (and are
consequently equal to NCM(0)). Hence:

Corollary 2 The family of regular languages is closed undérd.

The family of context-free languages are equal to the laggsiaccepted by finite accep-
tors augmented by exactly one pushdown (and thus are eqdd#*@M(0)). Similarly, the
family of one-counter languages are the languages accégtedceptors with exactly one
free counter (and are equal to NFCM(0)).

Proposition 4 The family of context-free languages and the family of an@ter languages
are not closed undetiad:

Proof. Let a,b,¢,d,p,q be distinct symbols, and. = {a"pb"qpc™qd™|n,m > 1}.
Clearly, L is NFCM(0) and, hence, also in NPCM(0). Bdllad(L) = {a"pc™gpb™qd™ |
n,m > 1} is not context-free. O

Remark: We do not believe that Proposition 3 can be generalized td fusl NPCM.
Leta,b,c,d,p, q be distinct symbols, and = {zpz"gpyqy” | z € {a,b}*,y € {c,d}*}.
L is a context-free language, hence in NPCM. However, we \eeltbat dlad(L) =
{zpygpx"qy” | x € {a,b}*,y € {¢,d}*} is notin NPCM.

The construction in Proposition 3 can be generalized inowariways. For example, let
¢ be a permutation of1, ..., k). For a worda in X1, and a permutation, define¢(a) =
{wpz g1y qyr - PTe(kyqYr | @ = WPT1qY1..PTRQYR, W € ¥, X1, Y1, ., T, Yk € BT, p,

q € X1}, For alanguagé, ¢(L) is defined in the obvious way. One can show that NFCM
is closed undeg. In fact, one can also have a second permutaticend apply this simulta-
neously ory, ..., yx, and the closure still holds.

We can also specify that some of thes (andy;’s) are to be “reversed”, e.gr; is replaced
by I (which is the reverse of;) andzs is replaced by:]. Then the result would still be
valid. For example, suppose we modify the definitiorlafd to r — dlad as follows:

Definition 3 For ain X7, define r-dlada) = {vpy"qzpwqz|a = vpwerpyqz}.

We will show that ifL is in NFCM (respectively, NCM), then—dlad(L) is also in NFCM
(respectively, NCM). We will need the following result in,[&]:

2 THE FAMILIES NCM, NFCM, AND NPCM 7

Proposition 5 NCM and NFCM are closed under reversal.

Lemma 3 If M is an NFCM (NCM), definé. = {afy | «, 8 are configurations of/, and
M on inputy starting in configurationy reaches configuratiof}. (Assume that the states
and counter values in configurationsand § are written in unary using distinct symbols.)
Then

1. L. can be accepted by an NFCM (NCNA)..
2. L7 (the reverse ol..) can be accepted by an NFCM (NC¥)_ .

Proof. The construction of\. is straightforward. M. readsa and configures the free
counter and reversal-bounded counters to the values smkdific. Then it reads3 and
records this configuration using another set of reversaklded counters)/, then simulates
the computation of\/ on inputy, and checks that the final configurationds The second
part follows from the above proposition. m|

Note that in the definition of.. above, the placement ef and $ in the string is not
important, i.e., they can appear befgres can appear before, ory can appear between the
two configurations. This is becausé. can use several sets of auxiliary counters, and before
simulatingM, M, can guess the values inand make two sets of copies, simulafe@son
inputy using one set of copy, and later when it seesn the input, checks that the values in
a agree with those that were recorded. The configurationglcalsb be written in reverse,
i.e.,a” andg”.

Proposition 6 NFCM and NCM are closed under— dlad.

Proof. The proof is a modification of the construction in the proofRwbposition 3, using
M,

M', when given a (marked) inputpy”qrpwqz, simulates the computation dff on
vpwgxpyqz. M’ first simulatesM on input segmentp. After processingy, M will be
in some configuratiow,. Without moving its input head)/’ guesses a configuratien,
that A/ would enter starting on,, on some inputw. It records(a,, a,,). M' also guesses
two configurationg?, andj, and records two copies of each, and then moves its its input
head ony” and simulates the computationf. ony” 3, 3;. Sinces, andf, are not present
in the input,M’ uses the values recorded in the auxiliary counters (as prednput) in the
simulation ofM”. M’ then continues the simulation 8f on input segmenjzp. The rest of
the construction is the same as in Proposition 3. O

Similarly, we can define r-dlgd.) = {vpy”qzpw”qz|a = vpwqzpyqz}, and the proposi-
tion above still holds.

Finally, consider the model of a two-way nondeterministiité automaton (with end-
markers) augmented with finitely many reversal-boundedhtang (2NCM). Such a machine
is finite-crossingf there is a constant such that in any computation, the input head crosses
the boundary between any two adjacent cells of the input &t ltmes. It is known that
any finite-crossing 2NCM can be converted to an equivalen¥INg]. Hence, all the results
above are valid for finite-crossing 2NCMs.

3. Space-Bounded and Time-Bounded Turing Machines

In this section, we investigate the closure properties @icegbounded and time-bounded
Turing Machine (TM) complexity classes unddrand dlad.

For a space bounfi(n), let NSPACKES(n)) be the class of languages acceptedsiiy)
space-bounded nondeterministic Turing machines,BBACES(n)) be the deterministic
class. Thus, these machines have a two-way read-only iapet fwith endmarkers) and
multiple read-write worktapes which af{n) space-bounded. (It is known that any number
of worktapes can be merged into one worktape with the sameedpaund.) Throughout,
we assume thaf(n) > log n. Note thatNSPACHKn) and DSPACHnR) are the classes of
context-sensitive and deterministic context-sensitwegliages, respectively.

Proposition 7 NSPACES (n)) and DSPACEf(n)) are closed undedlad.

Proof. First consider the casSPACKES(n)). Let M be an nondeterministic TM with
a two-way read-only input (with endmarkers) and$m) space-bounded read-write work-
tape. We construct a$i(n) space-bounded nondeterministic TMI' acceptingllad(L(M)).
Without loss of generality, we may construgt’ such that it hassever&l(n) space-bounded
read-write worktapes (since any number of worktapes carabidyamerged into one).

Given an input of the formypyqrpwqz, M' will simulate the computation o/ on
vpwqxpyqz by first nondeterministically choosing the locations of lwéntersp, ¢, p, ¢, and
recording them in binary on the worktape usitag n space. Then the simulation af is
implemented by\/’ in the obvious way: the simulation on the input segmemtgxp, and
gz is obvious. WhenV/ computes on input segmemtandy, M’ moves its input head to the
appropriate pointer locations (stored in the worktapes).

For the case o0DSPACES (n)), the construction above still works, but ndW’ needs to
systematically try (lexicographically) all possible 4pte locations of, ¢, p, g. We need to
assume thad/ always halts so that a simulation on a current 4-tuple thks fa accept can
be abandoned b}/’ and proceed to the next lexicographic 4-tuple. This assiompman
be made without loss of generality since afn) space-bounded deterministic TM can be
made halting [7].]

Clearly, the first part of the proof above applies to unregtd nondeterministic TMs
(which are equivalent to deterministic TMs), i.e., to rexiuely enumerable sets:

Corollary 3 The class of recursively enumerable sets is closed udidet

One can obtain similar results for time-bounded TMs. Fongxe, letP (NP) denote the
class of languages accepted by polynomial time-boundeztrdétistic (nondeterministic)
TMs . Then the constructions in the proof of Proposition Dasoves:

Corollary 4 P and NP are closed undéfad.

Turning now to the operation @fl, we have:

Proposition 8 DSPACES (n)), NSPACES (n)), P, and NP are not closed undkgf.

4 L-SYSTEMS 9

Proof. Let L C X* be a recursively enumerable language which is n@8PACES(n))
(respectivelyNSPACES(n)), P, NP). Leta, b, # be new symbols not iXx.

One can easily show that there exists a languafjén DSPACE.S (n))(respectively,
NSPACES(n)), P, NP) such thatL’ consists of words of the form’b#a wherei > 0
anda € L. Furthermore, for alh € L there exists some> 0 such that’b#«a € L' (see,
e.g., [19]). We now apply thkl operation:

ld(b- L") Nb#X* = b#L
butb#L is notinDSPACHES (n)) (respectivelyNSPACES(n)), P, NP). O

However, for unrestricted TMs, it is easy to show:

Proposition 9 The class of recursively enumerable sets is closed uiaider

4. L-Systems

We now consider the closure properties of the families of A ETOL languages undéd,
dlad andhi.

The closure properties of NCM and its generalizations anduages described by space-
and time-bounded Turing machines for thieoperator have already been given in [2]. How-
ever, we wish to consider the closure properties of two fe®ibf L-systems here under all
the operations ohi, Id anddlad. We will thus introduce the formal definition of thie
operation before we continue.

Definition 4 Leta be a word inx™. The hairpin inverse o, denoted byhi(«) is defined
ashi(a) = {zpy"p"z|la = zpyp"z andz,y,z € ¥*, pe LT}

This definition can be extended to languagexinin the natural way.
A result similar to Lemma 1 and Lemma 2 showing that we camauit loss of generality,
consider pointers of length one for theé operation was shown in [2]:

Lemma4 If o € ¥, hi(a) = {zay"az|a = zayaz,a € ¥, x,y,z € ¥*}.

We now show that the family of OL languages is not closed uaagrof the considered
operations.

Proposition 10 The family oOL languages is not closed undgi, Id or dlad.

Proof. ConsiderL = {a} € OL. Then
hi(L) = dlad(L) = ld(L) = 0
which is not a OL language. |

We now consider the closure properties of the family of ET@hduages.

Proposition 11 ETOL is closed undetd.

10

Proof. Follows immediately from Proposition 2 as ETOL is a full trio |

The proofs for closure of ETOL undéi anddlad are much more involved and are demon-
strated below. We use some definitions used to describe symizkd context-free grammars,
introduced by Jirgensen and Salomaa in [9]. We refer thaerda this paper for more intu-
ition and examples.

A tree domainD is a nonempty finite subset &f such that

(i) If u € D, then every prefix of: belongs taD,
(i) Foreveryu € D there exists > 0 such thafuj € D ifand only if1 < j <.

Let A be a set. AnA-labelled treeis a mapping : D — A, whereD is a tree domain.
Elements ofD are called nodes of the tree afdis said to be the domain of dom(¢). A
nodep € dom(t) is labelled byt(u). The set of leaves dfis denoted ledf). The subtree of
t at nodeu is t/ . When there is no confusion, we refer to a node simply by kella

Nodes of a tre¢that are not leaves are callether node®f ¢t. Theinner tree oft, inner(t),
is the tree obtained fromby cutting off all the leaves. Thgeld of an A-labelled tree, yd(t),
is the word obtained by concatenating the labels of the kafifrom left to right; the leaves
being ordered by the lexicographic orderingf. Forp € dom(t), path (1) is the sequence
of symbols of4 occurring on the path from the root ofo the nodeu. Foru, us € leaf(t)
with 11 # s, thejoin of py, us, denotedoin(uy, u2) is the longest worgk such thatu is a
prefix of bothu; andus. In other words, the join of two leaves is the unique node imctvh
the two paths split into two distinct paths.

LetG = (N,T,I,P) be a CF grammar. AN UT U {\})-labelled tree is aderivation
tree of(if it satisfies the following conditions:

(i) The root oft is labelled by the initial nonterminal, that i§\) = I.
(i) The leaves ot are labelled by terminals or by the symbol

(i) Let p € dom(t) havek immediate successorks,> 1. Thent(u) — t(ul)... t(uk) €
P.

A treet is a partial derivation tree if (i) and (iii) are satisfied. &ket of derivation trees of
G is denotedl'(GG). The derivation trees off are in one-to-one correspondence with the
equivalence classes of derivationg®producing terminal words, and thus

L(@) = {yd@) | t € T(@)}.

Definition 5 A synchronized context-free gramm&CF grammar, is a context-free gram-
mar

G = (N,T,I,P), (1)

whereN =V x (S U {A}) for finite alphabetd” andS.

We call elements of’ the base nonterminaland elements of the situation symbols
Nonterminals o¥/ x S are called thesynchronizing nonterminatsf G. Nonterminals of the
formV x {A}, are callednonsynchronizing nonterminals.

We define the morphishy; : (V x (S U{\}))* — S* by the conditiorhg((v,z)) = =
forallv € Vandz € SU {\}.

4 L-SYSTEMS 11

Definition 6 Let G be anSCFgrammar andt € T'(G). Lett; = inneft) and lety €
leaf(t;). Thesynchronizing sequendsync-sequence) correspondingfads seq, (1) =

h(pathy, (1).

Definition 7 Let G = (N,T,I,P) be aSCFgrammar whereN = V x (S U {A}).
A derivation treet € T'(G) is said to bee-acceptable if for ally, v € leaf(inner(t)),

S€Gnnery) (1) = S€Gnner;) (V)

Let G be a SCF grammar. The set@hcceptable trees @f is denoted byl (G).

Definition 8 The language-synchronized generatéyy G is L.(G) = yd(T.(G)). In this
case, we call ane-SCF grammar. A languagk is ane-SCF languaggf there exists &CF
grammarG such thatL = L.(G).

The family ofe-SCFlanguages is denoted I, (SCP.

Definition 9 Let G be ane-SCFgrammar. Then we sa§f is in binary normal form if all
productions are of the form eithéd,,z) — (Cy,y)(Dy,y) of (Az,z) = a, z,y € S,a €
TU{\}

It is known that we can assume without loss of generality évatry e-SCF language is
generated by an e-SCF grammar in binary normal form [1, 1ditHermore, it is known that
the family of e-SCF languages is equal to the family of ETQiglaages [13].

Intuitively, a derivation tree without nonsynchronizingmterminals is e-acceptable if at
each height, every nonterminal has the identical situagiombol. The use of nonsynchro-
nizing nonterminals allows for nonterminals that need yoichironize with nonterminals in
other branches. However, every tree in binary normal formsdoot have nonsynchronizing
nonterminals. The language e-synchronized generated isythe language obtained from
the yields of only the e-acceptable derivation trees.

We letV* be the set of all elements &f with z as superscript (not exponentiation), where
z is a new symbol. Also, we say' = v.

Proposition 12 £.(SCF) is closed undeh;.

Proof. LetG = (N, T, I, P)bean SCF grammarwhelé = V x (SU{A}) isin binary nor-
mal form. We will first transfornG into an intermediate SCF gramm@y = (N, 7,1, P;)
with Ny = Vi x (SU{A}), Vi = VuVvieyyEeyyleRay 1" foralla € T and letP;
be defined a# in addition to the following productions:

LetI’ — [LaRa vy e T.

For all productions inP of the form(A,, z) — (B,,y)(Cy,y), add
(ALelte @) = (B, y)(Cyy) | (B, y)(Cpole,y) | (BLe,y)(Cfe,y),
(A2,2) = (B,.)(C;.y) | (B;,9)(Cyy), ¥z € {La, Ra},a € T

For all productions inP of the form(A4,,z) — a,a € T, add

(Az,x) > a € P forz € {La, Ra}.

12

Itis cleaf thatLe(G1) = {w | w € Lo(G), |w|, > 2, for somea € T'}. Indeed G, nonde-
terministically guesses some terminakay, and two paths, only resulting in a derivation tree
if the two paths reach two distinct occurrences of the teatin Thus,G; has the property
that for each e-acceptable derivation tree, each basemuintd of the left and right path are
marked withLa and Ra, respectively, from the root to two distinct leaves, whica &belled

by the same terminad,. Moreover, for each treg the two paths separate at some node which
is the unique join which we will denote hy;.

We would like to easily “turn the subtree around” in betweka two marked paths, in
order to simulate the effect of the operator. It is easy to reverse an entire subtree (as we
will see in the transformation froi&'’, to G), however there may be branches on the subtree
t/u that are either to the left of the left marked path or to thétrigf the right marked path
(see the first diagram of Figure 1). So, we cannot simply savére subtreg/ ;.

Consequently, we will next move these branches outsideeofitb paths using nondeter-
minism.

Next, we transformG, into G, = (N,,T,1I', P»), another intermediate e-SCF grammar
(see Figure 1 for intuition with this step of the construnjiowhereN, = V5 x (Sy U
{A\), Vo =V uVkeyyReyyleRa gy Ryt [R} andS, = SUVF UVE forall
a € T. P, has all the productions df;, however for alla € T', make the following changes:

change productions of the for(al} *#*, x) — (B,*,y)(C,;**,y) to
(1) (AL,) = (L.y)(BY*,y) (O) (R.p).
change productions of the fortal2®, z) — (B,,y)(C}*,y) to,
(2) (AL, x) - (C}*,BL) and
(CLe, BL) - (cLa . y) | (CL), Vv € VE,
change productions of the forfmf”, x) = (B}, y)(Cy,y) to,
(ARI‘_; T) — (B;j;, C'i) | (ByR“,v),
(B% 1)2% (B, " Cy),s .
(B, C1) = (B, y),Yv e V™.
For all product|ons of the form4,, z) — (B,,y)(Cy,y), add
() (A, z) = (By,v)(Cy,v), ve VEUVE,
For all productions of the formAL®, z) — (BL*,4)(C,,y), add
(ALo z) — (BL",0)(Cy,v), ve VE '
For all productions of the formiAf*, =) — (B,,y)(CF*,y), add
(4) (ABa) — (By,v)(Cf“,v), veVk,
In addition, add:
(ALa y) — (ALe, z),VALe ¢ V©Ia y e VE,
ABRa y) — (ABe z) VAR ¢ yEBa 4 e VI
) = (Ag,u),YVA, € Vo e VEUVE v e VIUVEU {2},
= (R,s) | A, Vr, SESUVL
(R, ARY(A,, AR) VA, e V,s e SUVT,
— (R,s),VA, € V,s €8S,
r (L,s)| A\, Vr,s € SUVE,
,8) = (A, ALY(L, AL) VA, e V,s € S,
(L, ABY - (L,s),VA, € V,Vs € SUVE,

=

T
r

vibi’”/v

(
(A
(R,
(R,s) —
(R, AY)
(L,r) =
(L,s) =

(%)

2|w|, is equal to the number of occurrences of the lettér the wordw and|w| is the length ofw.

4 L-SYSTEMS 13

Lett € Te(G1). We construct an accepting treee T.(G»). We denote by sefn),
the word obtained by concatenating the labels of all braadie at heightn from left to
right. We proceed by induction on the heighttofAssume that at height of ¢, the corre-
sponding partial derivation tre of heightrm constructed so far has sé€n) = h(sen: (m))
where h is a homomorphism that fixes all nonterminals except it erdbese with base
nonterminals ofL. and R. There are many cases for heightt- 1. If there is a letter of
sen(n + 1) with LaRa as superscript, theti is constructed identically. If setm + 1)
has two distinct labeléC[, y) (D], y), thent' is constructed identically, but rather with
(L,y)(CL",y)(DE* y)(R,y) as children of theLaRa node. Itis clear that sefm + 1) =
h(sen: (n + 1)). If at heightn + 1, there is a branch witia as superscript which is the left
child of its parent and a branch witRa as superscript which is the right child of its parent,
then all nonterminals of can be rewritten as in and sep(n + 1) = h(sen (m + 1)).

If at heightn of ¢, there are two nonterminalsdZ®, z) and (BE®, z) which have chil-
dren (Cy,y) (D}, y) and (E,,y)(F}",y) respectively, then in’, (A2*, x) has one child
(D}, Ck) which has one childD%*,y). The nonterminalL, =) must consequently have
children (C,, C}) (L, C}) which have children(C,, y) and(L,y) respectively. Since the
path with every base nonterminal éfis always directly to the left of the path witha as
superscript, and all other nonterminals have identicdtichin at height: + 1 of ¢ as in height

m + 2 of ¢/, sen(n + 1) = h(sen: (m + 2)). The process is symmetric when the left path
branches left and the right branches left. If the left pathniches right and the right path
branches left, we use the left symbol first, while the righthpaaits for the next height.
Thus, by induction, and sinde, R paths end with\, yd(t) = yd(t') andL.(G1) C Le(G2).

For the reverse inclusion, we notice that at heights betoegdin, the tree must rewrite
using only situation symbols from§' since the paths must. After the join, whenever the
left path branches left and the right branch branches rahtonterminals must use situation
symbols fromS since the paths do (for anacceptable tree). Whenever the left path branches
right and the right path branches left, the tree must rewasiag symbols fron¥’ ', V¥ then
S since the paths do. Similarly for all other cases. Conseilydhere is exactly one tree in
Te(G2) for every tree inle(G1). Thus,Le(G2) C Le(Gy).

Hence, we havé,(G,) = L.(G2). MoreoverG» has the property that every nonterminal
with La as superscript is the left child or only child of its parentaimilarly for the right
path.

Lastly, we transfornG. into G = (N, T,I', P) whereN = V x (S, U {\}). For all
the productions that can be performed inside the two patbsadd a new production with a
marker on top of each base nonterminal, with all the the productiensrsed (ie. if original
production isA — BC, addA — CB). Then, for the productions used at the join, we
switch the two nonterminals between theand R path and add &as superscript, leaving all
productions outside the paths using normal productionsceld..(G) = hi(L.(G)). O

Corollary 5 ETOL is closed undehi.

Intuitively, with dlad, we pick four paths, and switch the yield between the first it
the yield between the second two. Similarly to the proof ahove will first pick two paths
and manipulate the trees so that each base nontermindlethlvéh La (or Ra, respectively)
is the left child (or right) of its parent, then, we will addtine second set of paths to the right

14

(AL’“RG',E)

(Fy,y)

(Py,y)

ay a ag a ag ag ay ag

(ALaRa)

ay A a ag a P ag ag az ag

Figure 1: A derivation tre¢ € T.(G1) and the new derivation treé € T.(G2) corresponding te.

of the first set and manipulate this subtree so as not to erevfith the first. Indeed, we need
only switch these two subtrees to obtain the desired effémivever, the two joins may be at
different heights, so we must guess at the lower join whatahel will be at the higher join.

Proposition 13 £.(SCP is closed undedlad.

Proof. LetG = (N, T, I, P) be ae-SCF grammar in binary normal form whe®¥ = V' x
(SU{A}). Similarly to the construction for thki operator, we will transfornd into G; and
thenG, by first picking two paths from root to leaves and then movith¢he child branches
of the paths that are outside of the two paths tolitend R branches. The only alteration we
must make to the construction is to allow separate termtodie picked as pointers. This can
easily be achieved by adding all productions of the fdras 1725 for all a,b € T'. Also,
instead of usind. and R on superscripts and nonterminals, we replace everywhebrelyi
andR;. This is mainly to differentiate between the first set of tvaihs and the second set
of two paths soon to be added. HercdG,) = {w | w € Le(G), |w| > 2}.

Next, we wish to add a second set of paths to each acceptagftte,. However, the new
paths can not interfere with the altered subtree of the first This is not difficult, as we only
need to restrict the possible placements of the second tths pathe conversion betweéhn
andGs.

First, for simplicity, we constructZs by changing all productions of the fortf¥, x)

— (B,y) to (A,z) — (B,y)(&,y) for all productions with one nonterminal of the right

4 L-SYSTEMS 15

hand side inP, and addind &, u) — (&, v)(&,v) | A,Yu,v € S,. This does not change the
accepted language and all productions either have onertatnthe empty word, two non-
terminals or four nonterminals on the right hand side. Thea transformGs into G4 by
changing all base nonterminals into ordered pairs, keejpaul of the old base nonterminal
in the first coordinate and the situation symbol in the secdvel will also use square brack-
ets for clarity (ie. replace all nontermindld, z) in every production o075 with ([A, z], x)).
This is since the conversion froi; to G5 creates trees that no longer keep track of the
situation symbol on the subscript of the base nonterminal.

Next, we transform int@; by adding the possible second set of paths to each accepting
tree of G4 (similarly to the conversion off to G1). We will restrict that the second set always
be to the right of the first two. This is achieved as follows:

For all productions of formi’ — I1¢f1b o b € T, change to
I' — [Frafabloakab gnd add[A%, 2], 2) — a,Vz € S, 2 € {Lsa, Raa}.
For all productions of fornf[A1af1% 2]) — ([B,],)([C"“Rlb y],y), add
([A%, z],z) — ([B,y],v)([C*,¥],y),Vz € {L1aR1bL2a LiaR1bLyaR,b}.
For all productions of fornf[A 1af1% z]) — ([B11afb 4] 4)([C,y],y), add
([A%, z],z) = ([B*,y].9)([C,y],y),Vz € {L1aR1bLsa, LiaR; bLzasz} and
([AI/]GR]b’/QﬂRQb,;L.]7 T) — ([‘BLlaRnga7 y]7 y)([0R2b7y]7y) |
([BErfb y], y)([CF2120,], y).
For all productions of form{[A4, =], z) — ([B,y],y)([C,y],y), add
([4%, 2], 2) = (B*.y.9)(C.y).9) | (B.yl.9)((C7.yl.y).,
Vz € {LQG,RQb,LgaRQb},VCL,b eT,
([AF=ofb 2], 2) — ([B"’“”ay]ay)([CRwa]:y)avmb eT.
For all productions of form
([A, 2],) = (L1, y], »)([B,yl, v)([C, 9], y)([R1,], y), add

([4%, 2], 2) = ([L1, 9], 9) (B, y], 9)(C.yl, v)7([yl.y),
for z € {Lsa, LgaRgb} Va beT.

Thus,
Lo(G5) = {w | w € Lo(G), w = uyausbuzausbus, forsomea, b € T, u; € T*}.

Moreover, there are third and fourth paths, both alwaysdpeim the second path or to the
right of it. They both must end strictly to the right of the sed path, hence it can not
continue on the second path after the join of the first two gath

Now that we have the paths marked for each tree, we can do Estonversion tdzs as
we did fromG; to G5 except with respect to the,a and R, b paths instead aof.;a and Lyb
(ie. ignoringL,a andR; a on base nonterminals) and using the second coordinate bages
nonterminal instead of the subscript. The only differerfea must be considered are with
productions of the form

([AFrefiathae o] o) = ([L1.yl.y) ([BE g 9) ((C™°. yl.y) ([RY*". 4],).

Here, the tree is not binary, and when thepath branches right, it should use the left branch
as situation symbol. Fortunately, nonsynchronizing nonieals make it easy to do just that.
Instead change the production above to

(AR R0b,) 2) (L, gl BR, glIC™, 4], N (RE, 4], 9)

16

and add

([Llay][BLlaay][CRlbay]7A) - ([Llay]ay)([BLla7y]::q)([CRlb:y]:y)

in advance. Then, when converting, it will pass this new asgerminal as situation symbol
and theL, branch will continue by duplicating the original subtredvibeen the first two
paths. Otherwise, we treat other productions with four aomtnals on the right hand side
exactly as we treat two. Since the conversion betw@erand G will work for arbitrary
grammars with paths marked asGh , andGs is of this form except productions with four
nonterminals on the right hand side which we treat similady obtainL.(Gs) = Le(G3).

Finally, it suffices to “switch” the two subtrees below thén® Notice now that the first
two marked paths of7s no longer have to be in continuous paths from root to leaves, a
they can be passed at their join to the branch. However, the two subtrees are completely
disjoint, not sharing any nodes. So, we can talk atloateft and right subtree since neither
has the other in its subtree.

Currently, when the joins occur, there are either three ar fionterminals on the right
hand side, with only the second and third being between ttiesp&Ve wish to switch these
two to the other join. This is easier to do if we need only pass ponterminal. So, we
transform intoG; by changing the second and third nonterminal in these ptazhsto
an intermediate nonsynchronizing nonterminal which thmemediately gets rewritten to the
original two. We will also mark these nonsynchronizing resntinals with.J; or .J on the
superscript of the base nonterminal if they are the left ghtrjoin, respectively. Then, we
convertG; into G's by changing it into binary normal form. This conversion oduces a new
situation symbol$, which will be used in place ok as situation symbol and will preserve
the yield of the subtree at each join. We convert iGtp by re-marking the two paths until
the two joins on the superscript dyand?2, only accepting if each reaches a symbol from
Vi x {$} andV2 x {$}, respectively. We need to keep track of paths until join Wulviere
not preserved by previous constructions.

We constructd g = (Nio,T,1I', Pig) whereNijg = Vig x (S10 U {A\} by switching
subtrees as follows:

For all productions of fornf A’ , z) — (Bé;’i,$)(0$, $), fori = 1,2, change to
(1) (AL, z) = (Ji, B{")(Cs, BY),

(2) (A%,) = (#, B{'Cs),

(3) (Ai,z) = (Ds, B{* D{*)(Cs, B{" D{*), VDg € Vy, if i =1,

(4) (Ai,z) = (Ds, Dy B{*)(Cs, DJ* B{*), VDg € Vy, if i = 2.

If J; is instead superscript on the base nontermingal

(1), (3) and (4) are completely analogous, however we ché2ige

For all productions of forn{A;, z) — (B,,y)(Cy,y), add

(6) (A,x) = (Bi, D) (D, Dif)(Ri, DY) (Cy, D) WDy € Vi, k £ 1,
(7) (AL, z) — (B, CJ}). , '

For all productions of form{ A}, ») — (B,,y)(C,,y), add

(8) (4;77') - (By7Dl{]k)(C;j/le)k)(Dw7D’({]k)(Rl7D’({]k) VD, € Vo, k 7& i,
(9) (AL,2) = (By,y)(Ci.y)-

5 LANGUAGE EQUATIONS 17

For all productions of forn{A,, z) — (B,,y)(Cy,y), add
(10)(Az,) = (By,u)(Cy,u) Yu € V5" UV UV V2 UV, Vi
In addition, add
(Ag,u) = (A, z), Yu e VUV u v v uvyivg, vi,
(#,u) = (#,v) | A\, Yu € V" U Sy, Yv € Sy, Vi,
(11)(R;,z) — (R ARt)(A ARt) VA, € Vy, Yo € Sy, Vi,
(Ri,u) = (R;,v) | A, Yu € Se UV UV, Yo e Sq UV, Vi k #1,
(Ji,u) = (Ji,v), Yu € V' UVgUVR uvy Vg,vuevguvﬁl Vi,
(J, u) — (A$ A | (A$,AJkB$) Yu € Sy, VAg, Bs € Vi, k # 1,
(Ai u) — (Ai,) VueVB’ UVy* k #1,
(Rz,a:) (B$,A B$) VA$ Bg; e Vy.

Lett € To(Gy). We will constructt’ € Te(G1p). Constructt’ exactly ast until the
first join. Indeed, this is the only way to construtt If both branches reach joins at the
same height, the two paths use productions from (3) and (4¢hmhill switch labels of
the joins using the situation symbol. All other branchedi height simply use this same
situation symbol using (10) and then continue as ifihe rest of the tree is identical except
with the two subtrees switched. The only other ways to coistf involve all branches
using productions created in (10), however this will notrafp@ the yield. If the left path
reaches the join at a higher height, then, at the join, it tisegproduction created in (1).
The right path nondeterministically uses the same sitnagiombol using productions from
either (6) or (8). The situation symbol allows the right p&thcontinue the subtree at the
left join. However, the yield of this subtree need be betwiberyield of all branches created
on the right path. The nontermind) nondeterministically uses the same situation sequence
as all the other branches until the right path reaches thensejoin. Also, the right path
continues the derivation using productions from (7) or (8pending on whether the path
branches left or right. If the path branches right, the pdsaétree continues, however
if it branches left, the right child should be continued te tfight of the passed subtree.
Consequently, it uses the production in (7) which is corgthby R; using the production in
(11). Then, the nonterminal; continues the subtree at this join. The right path continues
nondeterministically using situation symbols only fréfn Similarly if the right join occurs
first. Thust' € T.(G10) and this is the only way to construct an accepting tree.

Hence,L.(G1o) = {w | w € dlad(L.(G))}. O

Corollary 6 ETOL is closed undediad.

5. Language Equations

We now address the solvability of equations of the fédt') = R, dlad(X) = R whereR
is a given language andl an unknown.

We are able to show that the question of the existence of di@olfor equations where
R is regular is decidable, using essentially the same tedenas for equations involving
the hi operation, [2]. In fact, we are able to generalize our rastdtlanguage equations
involving unary operators as follows. Consider languagea¢igns of the typep(X) = R,

18

whereop : ¥t — 2" isa unary word operation generalized to a language operatithe
natural way:

op(Z) = | J op(a), foranyL C B+,

acl

To solve equations of the formp(X) = R, we need the notion of an inverse of the
operationop, defined as follows.

Definition 10 Letop : ¥+ — 2> pea unary word operation. The inverse of the operation
op, denoted byp~!, is defined as the unary word operation with the property,that all
w,v € YT, u € op(v) iff v € op~' (u).

Note that the operation “is the inverse of” is symmetric.

Lemma 5 The inverses of the operations, Id, dlad, reversal are respectivelki, li, dlad
and reversal wheré is the operation defined d§u) = {zayaz| u = zaz,z,y,z € ¥*,a €
DI

The existence of an operation inversexfoallows us to address equationg X) = R, R
a given language antl the unknown, as follows.

Proposition 14 Let R C ¥* be a language. If the equatiap(X) = R has a solutionZ,
then the languag&max = [op~* (R°)]¢ is a maximal solution.

Proof. Claim 1: op(Xmax) € R. Proof by contradiction. Suppose there exigtse
op(Xmax) such thatu ¢ R. Then clearlyu € R°. Asu € op(Xmax), thenu € op(v),
wherev € Xmax. By the definition of the inverse of a unary operation, thipiies that
v € op~t(u) C op~t(R®). Thisis a contradiction, since € Xmax = [op~!(R°)]°.

Claim 2: If L C ¥* is a language such thap(L) C R, thenL, C Xmax. We use again a
proof by contradiction. Suppose there exists X+ such thabp(L) C R andL € Xmax
Then there must exist € L — Xmax. Asu ¢ Xmax u € op~ ' (R¢) which implies that
u € op~ ' (v) with v € R°. However, since. € L, we have that € op(u) C op(L) C R, a
contradiction with the fact that € R“.

Thus if the equatioap(X) = R has a solutiorL., then by Claim 2. C Xmax. By Claim
1 we have thaR = op(L) C op(Xmax) C R and thusp(Xmax) = R. O

Proposition 15 If R C 7 is a regular language, the problem of whether of not the eiqnat
dlad(X) = R (respectivelyhi(X) = R, Id(X) = R, X" = R) has a solutionX C ¥* is
decidable.

Proof. ConstructR' = [dlad(R")]® (respectivelyR' = [hi(R°)]°, R' = [li(R)]°, R' =
[(R°)"]). If the equationdlad(X) = R (respectivelyhi(X) = R, ld(X) = R, X" = R)
has a solution, then by Proposition 1& is also a solution. A decision algorithm would
thus consist of constructing’ and checking thaflad(R') = R (respectivelyhi(R') = R,
li(R') = R, R = R). Since the equality of regular languages is decidable,REG is
constructively closed undeliad, hi, li and reversal the proposition follows. (REG is closed

6 CONCLUSIONS 19

underl: as, for a languagé C ¥* we have thati(L) = s(g(L)) whereg is a gsm defined
so thatg(zay) = za'y for all z,y € ¥*, a € X, while s is the regular substitution :
YUY —— 2% defined ag(a) = afora € ¥ ands(a') = aX*a.) O

For case wher& is context-free, it turns out that the decidability of egiste of solutions
to equation®p(X) = R is obtained whemp is an involution. An involution is a function
f: A — Awith the property thayf (f(z)) = z. For example, the identity and the reversal
operators are involutions.

Proposition 16 If op : 2*° — 2 is a unary language operator that is also an involution
then the equationp(X) = R always has a solution.

Proof. The solution to the equation is(R). m

6. Conclusions

In this paper we have continued the work in [2, 3] and considéhe properties of general-
izations of the bio-operations proposed in [5, 4, 18}:dlad andhi. The language families
NCM(k), NPCM(K) and NFCM(k) were found to be closed underftheperation and, more
generally, it was shown that any full trio is closed underftheperation. The families NCM
and NFCM were shown to be closed undéid while the families NPCM(0) (CF), NPCM
and NFCM(0) were shown to not be closed.

With respect to language families accepted by time- andespaanded Turing machines,
we demonstrated that NSPACHEn)), DSPACES(n)), P andNP were closed undeflad
while the same families were not closed untier

We then showed that the family of OL languages is not closetku, [d or dlad opera-
tions while the family of ETOL languages is closed underlalée operations.

Finally, we considered language equations ovehthél anddlad operations, and showed
that it is decidable whether or not a solution to the equatiofX) = R (respectively
ld(X) = R, dlad(X) = R) exists whenR is a regular language. We further showed that,
in general, ifop is a unary operation with an inversp—! then if the equation of the form
op(X) = R has a solutionX = [op~'(R¢)]¢ is a maximal solution.

It is our hope that continued study of the abstract propgdfehese operations will con-
tribute to a better understanding of the underlying biotagprocesses upon which they are
based. Future results on the biology of ciliates will allog/to validate our models, and
conversely, theoretical results will provide insightsoimthat the hard limits of the gene de-
scrambling process are.

References

[1] H. Bordihn and M. Holzer. 2002. On the computational céewjiy of synchronized
context-free languages$. of Universal Computer Sciencg(2): 119-140.

[2] M. Daley, O. H. Ibarra and L. Kari. 2002. Closure and dedidity properties of some
language classes with respect to ciliate bio-operatidhsoretical Computer Scienc®
appear.

20 REFERENCES

[3] M. Daley and L. Kari. 2002. Some properties of ciliate tmperationsPreproceedings,
Sixth International Conference on Developments in Langudteory 122-139.

[4] A. Ehrenfeucht, T. Harju, I. Petre and G. Rozenberg. 2@®dtterns of micronuclear
genes in cilliatesLecture Notes in Computer Scien2840, 279-289.

[5] A. Ehrenfeucht, D.M. Prescott and G. Rozenberg. 200n@uatational aspects of gene
(un)scrambling in ciliates. IEvolution as ComputatiofL..F. Landweber, E. Winfree eds.)
Springer-Verlag, Berlin, Heidelberg, 45-86.

[6] T. Harju, O. H. Ibarra, J. Karhumaki and A. Salomaa. 2088me decision problems
concerning semilinearity and commutatiah.of Computer and System Sciend&s (2):
169-439; extended abstract has appeareldeicture Notes in Computer Scien@976:
579-590, 2001.

[7] J. E. Hopcroft, R. Motwani and J. D. Ulliman. 2001. “Intwaction to Automata Theory,
Languages, and Computatiodtidison Wesley

[8] O. H. Ibarra. 1978. Reversal-bounded multicounter nrae$h and their decision prob-
lems.J. of the Association for Computing Maching®p: 116-133.

[9] H. Jurgensen and K. Salomaa. 1997. Block-synchroiozaiontext-free grammars. In
Advances in Algorithms, Languages, and CompleityDu, |. Ko eds.), Kluwer Aca-
demic Publishers, The Netherlands, 111-137.

[10] L. Kari and L.F. Landweber. 2000. Computational powé&igene rearrangment In
DNA5, DIMACS series in Discrete Mathematics and Theorkfimmputer SciencéE.
Winfree, D. Gifford eds.), American Mathematical Sociéi; 207-216.

[11] L.F. Landweber and L. Kari. 1999. The evolution of c&lucomputing: nature’s so-
lutions to a computational probler®NA4, BioSystem@.. Kari, H. Rubin, D.H. Wood
eds.), Elsevier, 52(1-3):3-13.

[12] L.F. Landweber, T. Kuo and E. Curtis. 2000. Evolutiomdassembly of an extremely
scrambled gend2roc. Nat. Acad. Sci97(7): 3298-3303.

[13] I. McQuillan. 2002. The generative capacity of blogkishronized context-free gram-
mars.submitted

[14] 1. McQuillan. 2002. Descriptional complexity of bloelkynchronization context-free
grammars. IrDescriptional Complexity of Formal Systems, Pre-Procegsliof a work-
shop The University of Western Ontario, London Canada, Report$86.

[15] D.M. Prescott. 1992. Cutting, splicing, reorderingdaelimination of DNA sequences
in hypotrichous ciliatesBioEssays14(5): 317-324.

[16] D.M. Prescott. 1992. The unusual organization and@seing of genomic DNA in Hy-
potrichous ciliatesTrends in Genet8:439-445.

[17] D.M. Prescott. 2000. Genome gymnastics: unique moé&NA evolution and pro-
cessing in ciliatedNature Reviews Genetick.191-198.

[18] D.M. Prescott, A. Ehrenfeucht and G. Rozenberg. 200dlelular operations for DNA
processing in hypotrichous ciliates. To appeaEuropean Journal of Protistology

[19] A.SalomaaFormal languagesAcademic Press, New York, 1973.

